1

SEMICONDUCTOR DEVICE USING A NITRIDE SEMICONDUCTOR

CROSS REFERENCE TO RELATED APPLICATION

This application claims benefit of priority under 35USC \$119 to Japanese Patent Application No. 2004-54330, filed on Feb. 27, 2004, the contents of which are incorporated by reference herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a semiconductor device, ¹⁵ for example, to an insulating gate type field effect transistor using a nitride semiconductor.

2. Related Background Art

Since a nitride semiconductor device using gallium nitride (hereinafter referred to simply as GaN) has a large band gap 20 as compared with a semiconductor device using silicon (Si), the semiconductor device has a high critical electric field, and from this characteristic, a small-sized device having a high breakdown voltage is easily realized. Accordingly, in a semiconductor for electric power control, a low on-resis- 25 tance is achieved, and a device having a low loss can be realized. Above all, in a field effect transistor using an AlGaN/GaN heterostructure (hereinafter referred to simply as an HFET (a heterostructure field effect transistor), satisfactory characteristics can be expected with a simple device $\ ^{30}$ structure. A gate electrode in AN HFET has a Schottky gate structure forming a Schottky junction with an AlGaN layer. Moreover, a conventional GaN-based HFET is a normally on-type device in which a current flows between a source and a drain, when a drain voltage is applied at a gate voltage $\ ^{35}$

However, in general, the Schottky gate structure has a problem that a leak current increases, when a gate leak current is large and device temperature rises. A normally-on type device has a problem that a large current flows at the 40 moment at which a power to a circuit is turned on, and this sometimes results in destruction of the device.

BRIEF SUMMARY OF THE INVENTION

According to a first aspect of the present invention, there is provided a semiconductor device comprising:

- a first semiconductor layer represented by a composition formula $Al_xGa_{1-x}N$ ($0 \le x \le 1$);
- a first conductivity type or non-doped second semiconductor layer represented by a composition formula Al_yGa_1 , yN ($0 \le y \le 1$, x < y) and is formed on the first semiconductor layer;
- a second conductivity type third semiconductor layer represented by a composition formula $Al_xGa_{1-x}N(0 \le x \le 1)$ and is selectively formed on the second semiconductor layer;
- a gate electrode formed on the third semiconductor layer;
- a source electrode electrically connected to the second $_{\rm 60}$ semiconductor layer; and
- a drain electrode electrically connected to the second semiconductor layer;

wherein the distance between the drain electrode and the third semiconductor layer is longer than the distance 65 between the source electrode and the third semiconductor layer.

2

According to a second aspect of the present invention, there is provided a semiconductor device comprising:

- a first semiconductor layer represented by a composition formula $Al_vGa_{1,v}N$ ($0 \le x \le 1$);
- a first conductivity type or non-doped second semiconductor layer represented by a composition formula $Al_yGa_{1-}yN$ ($0 \le y \le 1$, x<y) and is formed on the first semiconductor layer:
- a second conductivity type third semiconductor layer represented by a composition formula $Al_xGa_{1-x}N$ ($0 \le x \le 1$) and is selectively formed above the second semiconductor layer:
 - a gate insulator formed on the third semiconductor layer; a gate electrode formed on the gate insulator;
- a source electrode electrically connected to the second semiconductor layer; and a drain electrode electrically connected to the second semiconductor layer.

According to a third aspect of the present invention, there is provided a semiconductor device comprising:

- a first semiconductor layer represented by a composition formula $Al_xGa_{1-x}N$ ($0 \le x \le 1$);
- a first conductivity type or non-doped second semiconductor layer represented by a composition formula Al_yGa_1 . yN ($0 \le y \le 1$, x<y), formed on the first semiconductor layer and having a concave portion;
- a second conductivity type third semiconductor layer represented by a composition formula $Al_xGa_{1-x}N$ ($0 \le x \le 1$) and is selectively formed above a bottom surface of the concave portion of the second semiconductor layer;
- a gate electrode formed on the third semiconductor layer; a source electrode electrically connected to the second semiconductor layer; and a drain electrode electrically connected to the second semiconductor layer.

According to a fourth aspect of the present invention, there is provided a semiconductor device comprising:

- a first conductivity type or non-doped first semiconductor layer represented by a composition formula $Al_yGa_{1-y}N$ ($0 \le y \le 1$, x<y), the first semiconductor layer having a first surface and a second surface opposite to the first surface, and further having a concave portion on the side of the first surface:
- a second conductivity type second semiconductor layer represented by a composition formula $Al_xGa_{1-x}N$ ($0 \le x \le 1$) and is formed on the second surface of the first semiconductor layer;
- a gate electrode formed above a bottom surface of the concave portion of the first semiconductor layer;
- a source electrode electrically connected to the first semiconductor layer; and a drain electrode electrically connected to the first semiconductor layer.

BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1 is a sectional view schematically showing a first embodiment of a semiconductor device according to the present invention:
- FIG. 2 is a sectional view schematically showing a first modification of the semiconductor device shown in FIG. 1;
- FIG. 3 is a sectional view schematically showing a second modification of the semiconductor device shown in FIG. 1;
- FIG. 4 is a sectional view schematically showing a second embodiment of a semiconductor device according to the present invention;
- FIG. 5 is a sectional view schematically showing a modification of the semiconductor device shown in FIG. 4;